/* <copyright> This file contains proprietary software owned by Motorola Mobility, Inc.<br/> No rights, expressed or implied, whatsoever to this software are provided by Motorola Mobility, Inc. hereunder.<br/> (c) Copyright 2011 Motorola Mobility, Inc. All Rights Reserved. </copyright> */ /////////////////////////////////////////////////////////////////////// // Class Utils // Math Utility functions /////////////////////////////////////////////////////////////////////// var VecUtils = require("js/helper-classes/3D/vec-utils").VecUtils, ViewUtils = require("js/helper-classes/3D/view-utils").ViewUtils, Rectangle = require("js/helper-classes/3D/rectangle").Rectangle; var MathUtilsClass = exports.MathUtilsClass = Object.create(Object.prototype, { /////////////////////////////////////////////////////////////////////// // Instance variables /////////////////////////////////////////////////////////////////////// // VecUtils: { value: null, writable: true }, EPSILON: { value: 1.e-5, writable: true }, // these are used in containment tests INSIDE: { value: -1, writable: true }, ON: { value: 0, writable: true }, OUTSIDE: { value: 1, writable: true }, PI2: { value: 2*Math.PI, writable: true }, RAD_TO_DEG: { value: 180/Math.PI, writable: true }, DEG_TO_RAD: { value: Math.PI/180, writable: true }, /////////////////////////////////////////////////////////////////////// // Property accessors /////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////// // Vector Methods /////////////////////////////////////////////////////////////////////// vecIntersectPlaneForParam: { value: function( pt0, vec, plane ) { // declare the variable to return - undefined when there is no solution var param; var a = plane[0], b = plane[1], c = plane[2], d = plane[3]; var dx = vec[0], dy = vec[1], dz = vec[2]; var x0 = pt0[0], y0 = pt0[1], z0 = pt0[2]; var numerator = -(a*x0 + b*y0 + c*z0 + d); var denominator = a*dx + b*dy + c*dz; var rtnPt; if (this.fpSign(denominator) != 0) param = numerator / denominator; return param; } }, vecMag3: { value: function( vec ) { if (vec.length < 3) return; var mag = vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]; mag = Math.sqrt( mag ); return mag; } }, vecMag: { value: function( dimen, vec ) { var sum = 0.0; for (var i=0; i<dimen; i++) sum += vec[i]*vec[i]; return Math.sqrt( sum ); } }, vecSubtract: { value: function( a, b ) { var rtnVec; var n = a.length; if (b.length < n) n = b.length; if (n > 0) { rtnVec = [0]; for (var i=0; i<n; i++) rtnVec[i] = a[i] - b[i]; } return rtnVec; } }, vecAdd: { value: function( a, b ) { var rtnVec; var n = a.length; if (b.length < n) n = b.length; if (n > 0) { rtnVec = [0]; for (var i=0; i<n; i++) rtnVec[i] = a[i] + b[i]; } return rtnVec; } }, vecDist: { value: function( a, b ) { var sum; var n = a.length; if (b.length < n) n = b.length; if (n > 0) { var sum = 0.0; for (var i=0; i<n; i++) { var d = a[i] - b[i]; sum += d*d; } sum = Math.sqrt( sum ); } return sum; } }, vecIntersectPlane: { value: function( pt0, vec, plane ) { // declare the return point. May be undefined in ill-conditioned cases. var rtnPt; var t = this.vecIntersectPlaneForParam( pt0, vec, plane ); if (t != undefined) { var x0 = pt0[0], y0 = pt0[1], z0 = pt0[2]; var dx = vec[0], dy = vec[1], dz = vec[2]; rtnPt = [x0 + t*dx, y0 + t*dy, z0 + t*dz] ; } return rtnPt; } }, getPointOnPlane: { value: function( plane ) { // abreviate the plane equation var a = plane[0], b = plane[1], c = plane[2], d = plane[3]; var x = 0.0, y = 0.0, z = 0.0; if ( Math.abs(plane[0]) > Math.abs(plane[1]) ) { if ( Math.abs(plane[0]) > Math.abs(plane[2]) ) x = -d/a; else z = -d/c; } else { if (Math.abs(plane[1]) > Math.abs(plane[2]) ) y = -d/b; else z = -d/c; } // get the point on the plane return [x, y, z]; } }, transformPlane: { value: function( plane, mat ) { // we will project a point down one of the coordinate axes to find a point on the plane // that point and the normal to the plane will be transformed by the matrix, and the 'd' // component of the plane equation will be reset using the new normal and point. // find a point on the plane var ptOnPlane = this.getPointOnPlane(plane); ptOnPlane[3] = 1.0; // 4 dimen so we can transform it // transform the point //ptOnPlane = mat.multiply( ptOnPlane ); ptOnPlane = glmat4.multiplyVec3(mat, ptOnPlane, []); plane = this.transformVector( plane, mat ); plane[3] = -this.dot3(plane, ptOnPlane ); return plane; } }, transformHomogeneousPoint: { value: function( srcPt, mat ) { var pt = srcPt.slice(0); this.makeDimension4( pt ); var x = VecUtils.vecDot(4, pt, [mat[0], mat[4], mat[ 8], mat[12]] ), y = VecUtils.vecDot(4, pt, [mat[1], mat[5], mat[ 9], mat[13]] ), z = VecUtils.vecDot(4, pt, [mat[2], mat[6], mat[10], mat[14]] ), w = VecUtils.vecDot(4, pt, [mat[3], mat[7], mat[11], mat[15]] ); return [x, y, z, w]; } }, applyHomogeneousCoordinate: { value: function( hPt ) { var w = hPt[3]; hPt[0] /= w; hPt[1] /= w; hPt[2] /= w; hPt[3] = 1; return hPt; } }, transformAndDivideHomogeneousPoint: { value: function( pt, mat ) { return this.applyHomogeneousCoordinate( this.transformHomogeneousPoint(pt, mat) ); } }, transformPoint: { value: function( srcPt, mat ) { var pt = srcPt.slice(0); this.makeDimension3( pt ); var x = VecUtils.vecDot(3, pt, [mat[0], mat[4], mat[ 8]] ) + mat[12], y = VecUtils.vecDot(3, pt, [mat[1], mat[5], mat[ 9]] ) + mat[13], z = VecUtils.vecDot(3, pt, [mat[2], mat[6], mat[10]] ) + mat[14]; return [x, y, z]; } }, transformVector: { value: function( vec, mat ) { this.makeDimension3( vec ); var x = VecUtils.vecDot(3, vec, [mat[0], mat[4], mat[ 8]] ), y = VecUtils.vecDot(3, vec, [mat[1], mat[5], mat[ 9]] ), z = VecUtils.vecDot(3, vec, [mat[2], mat[6], mat[10]] ); return [x, y, z]; } }, interpolateLine3D: { value: function( pt0, pt1, t ) { var x0 = pt0[0], y0 = pt0[1], z0 = pt0[2], x1 = pt1[0], y1 = pt1[1], z1 = pt1[2]; var pt = [ x0 + t*(x1 - x0), y0 + t*(y1 - y0), z0 + t*(z1 - z0) ]; return pt; } }, dot: { value: function( v0, v1 ) { var dimen = v0.length; if (v1.length < v0.length) dimen = v1.length; var sum = 0.0; for (var i=0; i<dimen; i++) sum += v0[i] * v1[i]; return sum; } }, dot3: { value: function( v0, v1 ) { var sum = 0.0; if ((v0.length < 3) || (v1.length < 3)) return; for (var i=0; i<3; i++) sum += v0[i] * v1[i]; return sum; } }, dot2: { value: function( v0, v1 ) { if ((v0.length < 2) || (v1.length < 2)) return; var sum = v0[0]*v1[0] + v0[1]*v1[1]; return sum; } }, cross: { value: function( v0, v1 ) { var rtnVal; if ((v0.length == 2) && (v1.length == 2)) rtnVal = v0[0]*v1[1] - v0[1]*v1[0]; else if ((v0.length == 3) && (v1.length == 3)) rtnVal = VecUtils.vecCross(3, v0, v1 ); return rtnVal; } }, negate: { value: function( v ) { var dimen = v.length; for (var i=0; i<dimen; i++) v[i] = -v[i]; return v; } }, //returns the intersection point between the two segments (null if no intersection) segSegIntersection2D: { value: function (seg0Start, seg0End, seg1Start, seg1End, epsilon) { //check for parallel segments var denom = (seg1End[1] - seg1Start[1]) * (seg0End[0] - seg0Start[0]) - (seg1End[0] - seg1Start[0]) * (seg0End[1] - seg0Start[1]); if (Math.abs(denom) <= epsilon) { return null; //no intersection reported for segments that are close to parallel or parallel } //the parameter value of intersection point on seg0 var paramSeg0 = (seg1End[0] - seg1Start[0]) * (seg0Start[1] - seg1Start[1]) - (seg1End[1] - seg1Start[1]) * (seg0Start[0] - seg1Start[0]); paramSeg0 /= denom; //the parameter value of intersection point on seg1 var paramSeg1 = (seg0End[0] - seg0Start[0]) * (seg0Start[1] - seg1Start[1]) - (seg0End[1] - seg0Start[1]) * (seg0Start[0] - seg1Start[0]); paramSeg1 /= denom; //check whether the parameters are both between 0 and 1 if (Math.abs(paramSeg0) > 1.0 || Math.abs(paramSeg1) > 1.0) { return null; //no intersection unless the the intersection point lies on both segments } var intPt = [seg0Start[0] + paramSeg0 * (seg0End[0] - seg0Start[0]), seg0Start[1] + paramSeg0 * (seg0End[1] - seg0Start[1])]; return intPt; } }, //this.segSegIntersection = function (seg0, seg1) distPointToRay: { value: function (pt, rayOrig, rayDir) { var rayMagSq = rayDir[0]*rayDir[0] + rayDir[1]*rayDir[1] + rayDir[2]*rayDir[2]; //sq. of the ray direction magnitude (need not be 1) //find the projection of pt on ray var U = ( ( (pt[0] - rayOrig[0] ) * ( rayDir[0]) ) + ( (pt[1] - rayOrig[1] ) * ( rayDir[1]) ) + ( (pt[2] - rayOrig[2] ) * ( rayDir[2]) ) ) / ( rayMagSq ); if( U < 0.0 ) { // closest point falls behind rayOrig // so return the min. of distance to rayOrig return this.vecDist(rayOrig, pt); }//if( U < 0.0) { var intersection = [ rayOrig[0] + U * (rayDir[0]), rayOrig[1] + U * (rayDir[1]), rayOrig[2] + U * (rayDir[2])]; return this.vecDist(intersection, pt); } }, //returns the parameter value of projection of pt on SegP0P1 (param. at P0 is 0, param at P1 is 1) paramPointProjectionOnSegment: { value: function(pt, segP0, segP1){ var segMag = this.vecDist(segP0, segP1); return ( ( (pt[0] - segP0[0] ) * ( segP1[0] - segP0[0]) ) + ( (pt[1] - segP0[1] ) * ( segP1[1] - segP0[1]) ) + ( (pt[2] - segP0[2] ) * ( segP1[2] - segP0[2]) ) ) / ( segMag * segMag ); } }, //returns the distance of pt to segment P0P1 // note the distance is to segment, not to line distPointToSegment: { value: function (pt, segP0, segP1) { var U = this.paramPointProjectionOnSegment(pt, segP0, segP1); if( U < 0.0 || U > 1.0 ) { // closest point does not fall within the segment // so return the min. of distance to segment endpoints var distToP0 = this.vecDist(segP0, pt); var distToP1 = this.vecDist(segP1, pt); if (distToP0 < distToP1) { return distToP0; } else { return distToP1; } }//if( U < 0.0 || U > 1.0 ) { var intersection = [ segP0[0] + U * (segP1[0] - segP0[0]), segP0[1] + U * (segP1[1] - segP0[1]), segP0[2] + U * (segP1[2] - segP0[2])]; return this.vecDist(intersection, pt); } }, nearestPointOnLine2D: { value: function( linePt, lineDir, pt ) { var vec = this.vecSubtract( pt, linePt ); var dot = this.dot( lineDir, vec ); var mag = this.vecMag(2,lineDir); if (this.fpSign(mag) == 0) return; var d = dot/mag; var dVec = VecUtils.vecNormalize( 2, lineDir, d ); return this.vecAdd( linePt, dVec ); } }, parameterizePointOnLine2D: { value: function( linePt, lineDir, ptOnLine ) { var t; if (Math.abs(lineDir[0]) > Math.abs(lineDir[1])) { var x1 = linePt[0] + lineDir[0]; if (this.fpCmp(ptOnLine[0],x1) == 0) t = 1.0; else t = (ptOnLine[0] - linePt[0]) / (linePt[0]+lineDir[0] - linePt[0]); } else { var y1 = linePt[1] + lineDir[1]; if (this.fpCmp(ptOnLine[1],y1) == 0) t = 1.0; else t = (ptOnLine[1] - linePt[1]) / (linePt[1]+lineDir[1] - linePt[1]); } return t; } }, pointsEqual: { value: function( dimen, a, b ) { if ((a.length < dimen) || (b.length < dimen)) throw new Error( "dimension error in VecUtils.vecAdd" ); for (var i=0; i<dimen; i++) { if (this.fpCmp(a[i],b[i]) != 0) return false; } return true; } }, makeDimension4: { value: function( vec ) { var dimen = vec.length; if (dimen < 4) { for (var i=0; i<3-dimen; i++) vec.push(0); vec.push(1); } else if (dimen > 4) { for (var i=0; i<dimen-4; i++) vec.pop(); } return vec; } }, makeDimension3: { value: function( vec ) { var dimen = vec.length; if (dimen < 3) { for (var i=0; i<3-dimen; i++) vec.push(0); } else if (dimen > 3) { for (var i=0; i<dimen-3; i++) vec.pop(); } return vec; } }, styleToNumber: { value: function( str ) { var index = str.indexOf( "px" ); if (index >= 0) str = str.substr( 0, index ); var n = Number( str ); return n; } }, isIdentityMatrix: { value: function( mat ) { if(!mat) { return false; } else { if(mat[0] !== 1) return false; if(mat[1] !== 0) return false; if(mat[2] !== 0) return false; if(mat[3] !== 0) return false; if(mat[4] !== 0) return false; if(mat[5] !== 1) return false; if(mat[6] !== 0) return false; if(mat[7] !== 0) return false; if(mat[8] !== 0) return false; if(mat[9] !== 0) return false; if(mat[10] !== 1) return false; if(mat[11] !== 0) return false; if(mat[12] !== 0) return false; if(mat[13] !== 0) return false; if(mat[14] !== 0) return false; if(mat[15] !== 1) return false; } return true; } }, rectsOverlap: { value: function( pt, width, height, elt ) { // only consider rectangles with non-zero area if ((width == 0) || (height == 0)) return false; // get the mins/maxs of the onput rectangle var xMin, xMax, yMin, yMax; if (width > 0) { xMin = pt[0]; xMax = pt[0] + width; } else { xMax = pt[0]; xMin = pt[0] + width; } if (height > 0) { yMin = pt[1]; yMax = pt[1] + height; } else { yMax = pt[1]; yMin = pt[1] + height; } // get the bounds of the element in global screen space var bounds = ViewUtils.getElementViewBounds3D( elt ); var bounds3D = []; for (var i=0; i<4; i++) bounds3D[i] = ViewUtils.localToGlobal( bounds[i], elt ); // get the min/maxs for the element var xMinElt = bounds3D[0][0], xMaxElt = bounds3D[0][0], yMinElt = bounds3D[0][1], yMaxElt = bounds3D[0][1]; for (var i=1; i<4; i++) { if (bounds3D[i][0] < xMinElt) xMinElt = bounds3D[i][0]; else if (bounds3D[i][0] > xMaxElt) xMaxElt = bounds3D[i][0]; if (bounds3D[i][1] < yMinElt) yMinElt = bounds3D[i][1]; else if (bounds3D[i][1] > yMaxElt) yMaxElt = bounds3D[i][1]; } // test 1. Overall bounding box test if ((xMaxElt < xMin) || (xMinElt > xMax) || (yMaxElt < yMin) || (yMinElt > yMax)) return false; // test 2. See if any of the corners of the element are contained in the rectangle var rect = Object.create(Rectangle, {}); rect.set( pt[0], pt[1], width, height ); for (var i=0; i<4; i++) { if (rect.contains( bounds3D[i][0], bounds3D[i][1] )) return true; } // test 3. Bounding box tests on individual edges of the element for (var i=0; i<4; i++) { var pt0 = bounds3D[i], pt1 = bounds3D[(i+1)%4]; // get the extremes of the edge if (pt0[0] < pt1[0]) { xMinElt = pt0[0]; xMaxElt = pt1[0]; } else { xMaxElt = pt0[0]; xMinElt = pt1[0]; } if (pt0[1] < pt1[1]) { yMinElt = pt0[1]; yMaxElt = pt1[1]; } else { yMaxElt = pt0[1]; yMinElt = pt1[1]; } if ((xMaxElt < xMin) || (xMinElt > xMax) || (yMaxElt < yMin) || (yMinElt > yMax)) continue; else { // intersect the element edge with the 4 sides of the rectangle // vertical edges var xRect = xMin; for (var j=0; j<2; j++) { if ((xMinElt < xRect) && (xMaxElt > xRect)) { var t = (xRect - pt0[0])/(pt1[0] - pt0[0]); var y = pt0[1] + t*(pt1[1] - pt0[1]); if ((y >= yMin) && (y <= yMax)) return true; } xRect = xMax; } // horizontal edges var yRect = yMin; for (var j=0; j<2; j++) { if ((yMinElt < yRect) && (yMaxElt > yRect)) { var t = (yRect - pt0[1])/(pt1[1] - pt0[1]); var x = pt0[0] + t*(pt1[0] - pt0[0]); if ((x >= xMin) && (x <= xMax)) return true; } yRect = yMax; } } } // if we get here there is no overlap return false; } }, /////////////////////////////////////////////////////////////////////// // Bezier Methods /////////////////////////////////////////////////////////////////////// // this function returns the quadratic Bezier approximation to the specified // circular arc. The input can be 2D or 3D, determined by the minimum dimension // of the center and start point. // includedAngle is in radians, can be positiveor negative circularArcToBezier: { value: function( ctr_, startPt_, includedAngle ) { var dimen = 3; var ctr = ctr_.slice(); MathUtils.makeDimension3( ctr ); var startPt = startPt_.slice(); MathUtils.makeDimension3( startPt ); // make sure the start point is good var pt = VecUtils.vecSubtract(dimen, startPt, ctr); var rad = VecUtils.vecMag(dimen, pt); if ((dimen != 3) || (MathUtils.fpSign(rad) <= 0) || (MathUtils.fpSign(includedAngle) == 0)) { if (dimen != 3) console.log( "MathUtils.circularArcToBezier works for 3 dimensional points only. Was " + dimen ); return [ startPt.slice(0), startPt.slice(0), startPt.slice(0) ]; } // determine the number of segments. 45 degree span maximum. var nSegs = Math.ceil( Math.abs(includedAngle)/(0.25*Math.PI) ); if (nSegs <= 0) return [ startPt.slice(0), startPt.slice(0), startPt.slice(0) ]; var dAngle = includedAngle/nSegs; // determine the length of the center control point from the circle center var cs = Math.cos( 0.5*Math.abs(dAngle) ), sn = Math.sin( 0.5*Math.abs(dAngle) ); var c = rad*sn; var h = c*sn/cs; var d = rad*cs + h; var rtnPts = [ VecUtils.vecAdd(dimen, pt, ctr) ]; var rotMat = Matrix.RotationZ( dAngle ); for ( var i=0; i<nSegs; i++) { // get the next end point var pt2 = MathUtils.transformPoint( pt, rotMat ); // get the next center control point var midPt = vec3.add(pt, pt2, []); VecUtils.vecScale(dimen, midPt, 0.5); midPt = VecUtils.vecNormalize( dimen, midPt, d ); // save the next segment rtnPts.push( VecUtils.vecAdd(dimen, midPt, ctr) ); rtnPts.push( VecUtils.vecAdd(dimen, pt2, ctr) ); // advance for the next segment pt = pt2; } return rtnPts; } }, /////////////////////////////////////////////////////////////////////// // Polygon Methods /////////////////////////////////////////////////////////////////////// getPolygonNormal: { value: function( n, xPts, yPts, zPts ) { var xNrm = 0.0, yNrm = 0.0, zNrm = 0.0; for (var i=0; i<n; i++) { var j = (i+1) % n; xNrm += (yPts[i] - yPts[j]) * (zPts[i] + zPts[j]); yNrm += (zPts[i] - zPts[j]) * (xPts[i] + xPts[j]); zNrm += (xPts[i] - xPts[j]) * (yPts[i] + yPts[j]); } var normal = [xNrm, yNrm, zNrm]; // the area of the polygon is the length of the normal var area = VecUtils.vecMag(3, normal ); if (this.fpSign(area) != 0) { //vec3.scale(normal, 1.0/area); normal = VecUtils.vecNormalize(3, normal, 1.0); } return normal; } }, getNormalFromBounds3D: { value: function( b ) { var xNrm = 0.0, yNrm = 0.0, zNrm = 0.0; for (var i=0; i<4; i++) { var j = (i+1) % 4; xNrm += (b[i][1] - b[j][1]) * (b[i][2] + b[j][2]); yNrm += (b[i][2] - b[j][2]) * (b[i][0] + b[j][0]); zNrm += (b[i][0] - b[j][0]) * (b[i][1] + b[j][1]); } var normal = [xNrm, yNrm, zNrm]; // the area of the polygon is the length of the normal var area = VecUtils.vecMag(3, normal ); if (this.fpSign(area) != 0) vec3.scale( normal, 1.0/area ); return normal; } }, getCenterFromBounds: { value: function( dimen, bounds ) { var minVals = bounds[0].slice(0), maxVals = bounds[0].slice(0); for (var iPt=1; iPt<4; iPt++) { for (var i=0; i<dimen; i++) { if (bounds[iPt][i] < minVals[i]) minVals[i] = bounds[iPt][i]; if (bounds[iPt][i] > maxVals[i]) maxVals[i] = bounds[iPt][i]; } } var ctr = VecUtils.vecAdd(dimen, minVals, maxVals); VecUtils.vecScale( dimen, ctr, 0.5 ); return ctr; } }, boundaryContainsPoint: { value: function( bounds, targetPt, backFacing ) { var pt = targetPt.slice(0); while (pt.length > 2) pt.pop(); // this function returns -1 for inside, 0 for on and 1 for outside. // values defined as instance variables above var nPts = bounds.length; var pt1 = bounds[nPts-1].slice(0); while (pt1.length > 2) pt1.pop(); for (var i=0; i<nPts; i++) { // get the vector along the edge of the boundary var pt0 = pt1; pt1 = bounds[i].slice(0); while (pt1.length > 2) pt1.pop(); var vec0 = VecUtils.vecSubtract(2, pt1, pt0 ); if (vec0.length == 3) vec0.pop(); // get a vector from the target point to pt0 //var vec1 = pt.subtract( pt0 ); var vec1 = VecUtils.vecSubtract(2, pt, pt0 ); if (vec1.length == 3) vec1.pop(); // look at the cross product of the 2 vectors var cross = VecUtils.vecCross(2, vec0, vec1 ); var sign = this.fpSign( cross ); if (sign == 0) { //var t = vec1.modulus() / vec0.modulus(); var t = VecUtils.vecMag(2, vec1)/VecUtils.vecMag(2, vec0); if ((this.fpSign(t) >= 0) && (this.fpCmp(t,1.0) <= 0)) return this.ON; else return this.OUTSIDE; } if (backFacing) { if (this.fpSign(cross) < 0) return this.OUTSIDE; } else { if (this.fpSign(cross) > 0) return this.OUTSIDE; } } return this.INSIDE; } }, /////////////////////////////////////////////////////////////////////// // floating point Methods /////////////////////////////////////////////////////////////////////// fpSign: { value: function( d ) { var sign = 0; if (d < -this.EPSILON) sign = -1; else if (d > this.EPSILON) sign = 1; return sign; } }, fpCmp: { value: function(x,y) { return this.fpSign( x-y ); } }, /////////////////////////////////////////////////////////////////////// // Utility method to convert numbers in scientific notation to decimal. // This is needed for matrix3d which does not support values in // scientific notation (that are often returned by Matrix calculations). // You pass in the flattened Array value of the Matrix (arr) and the // desired number of significant digits after the decimal (sigDig). /////////////////////////////////////////////////////////////////////// scientificToDecimal: { value: function(arr, sigDig) { if(!sigDig) { sigDig = 10; } var arrLen = arr.length; for(var k=0; k<arrLen; k++) { arr[k] = Number(arr[k].toFixed(sigDig)); } return arr; } }, /////////////////////////////////////////////////////////////////////// // Utility method to calculate angle between two points /////////////////////////////////////////////////////////////////////// getAngleBetweenPoints: { value: function(pt0, pt1, origin) { // var v0 = pt0.slice(0); // var v1 = pt1.slice(0); // // var origin = [0, 0]; // // if(origin) // { // v0 = VecUtils.vecSubtract(2, pt0, origin); // v1 = VecUtils.vecSubtract(2, pt1, origin); // } // // var cross = VecUtils.vecCross(2, v0, v1); // console.log("cross is " + cross); // // var angle = Math.asin(cross / (VecUtils.vecMag(2, v0) * VecUtils.vecMag(2, v1))); var angle = (Math.atan2(pt1[1], pt1[0]) - Math.atan2(pt0[1], pt0[0])); if(angle < 0) { angle = angle + this.PI2; } return angle; } }, /////////////////////////////////////////////////////////////////////// // Utility method to calculate angle between two 3D vectors /////////////////////////////////////////////////////////////////////// getAxisAngleBetween3DVectors: { value: function (vec1, vec2, axis) { //compute magnitudes of the vectors var v1n = VecUtils.vecNormalize(3, vec1, 1.0); var v2n = VecUtils.vecNormalize(3, vec2, 1.0); //angle between the vectors (acos for now...) var angle = Math.acos(VecUtils.vecDot(3, v1n, v2n)); if (Math.abs(angle) < this.EPSILON) { return 0; } //TODO testing...remove this block if (isNaN(angle)){ console.log("Warning! getAxisAngleBetween3DVectors Angle is NaN"); } //TODO end testing block //optionally, if axis is provided, create the axis of rotation as well var rotAxis = VecUtils.vecCross(3, v1n, v2n); rotAxis = VecUtils.vecNormalize(3, rotAxis, 1); if (axis){ axis[0] = rotAxis[0]; axis[1] = rotAxis[1]; axis[2] = rotAxis[2]; } return angle; } }, getLocalPoint: { value: function (x, y, planeEq, matL) { var globalPt = [x, y, 0]; var vec = [0,0,1]; var localPt = this.vecIntersectPlane(globalPt, vec, planeEq); if(!localPt) { return null; // return [1, 1]; } localPt = this.transformPoint(localPt, matL); return localPt; } }, colorToHex: { value: function( colorArray ) { if (colorArray.length < 3) return "#000000"; var str = "#"; for (var i=0; i<3; i++) { var c = colorArray[i]; if (c < 0) c = 0; else if (c > 1) c = 1.0; c *= 255; var h = c.toString(16); if (h.length < 2) h = "0" + h; if (h.length < 2) h = "0" + h; str = str + h; } return str; } }, /////////////////////////////////////////////////////////////////////// // Utility method to calculate angle between two vectors from origin /////////////////////////////////////////////////////////////////////// getAngleBetweenVectors: { value: function(v0, v1) { var dot = this.dot3(v0, v1); var v0Mag = this.vecMag3(v0); var v1Mag = this.vecMag3(v1); var angle = Math.acos(dot / (v0Mag*v1Mag)); return angle; } }, // Simple decomposition that does not take scale or perspective into account decomposeMatrix: { value: function(m) { var rY = Math.atan2(-m[2], m[10]) * this.RAD_TO_DEG; var rX = Math.asin(m[6]) * this.RAD_TO_DEG; var rZ = Math.atan2(-m[4], m[5]) * this.RAD_TO_DEG; return {rotX: rX, rotY: rY, rotZ: rZ}; } }, /** * decompose matrix in javascript found at https://github.com/joelambert/morf/blob/master/js/src/WebkitCSSMatrix.ext.js * used with permission from Joe Lambert: "as long as the original licence text and attribution is left in then you're * good to use it as you see fit." * * WebKitCSSMatrix Extensions * * Copyright 2011, Joe Lambert (http://www.joelambert.co.uk) * Free to use under the MIT license. * http://joelambert.mit-license.org/ */ /** * Decomposes the matrix into its component parts. * A Javascript implementation of the pseudo code available from http://www.w3.org/TR/css3-2d-transforms/#matrix-decomposition * @author Joe Lambert * @returns {Object} An object with each of the components of the matrix (perspective, translate, skew, scale, rotate) or identity matrix on failure */ // Input: matrix ; a 4x4 matrix // Output: translation ; a 3 component vector // rotation ; Euler angles, represented as a 3 component vector // scale ; a 3 component vector // skew ; skew factors XY,XZ,YZ represented as a 3 component vector // perspective ; a 4 component vector // Returns false if the matrix cannot be decomposed. An object with the above output values if it can. decomposeMatrix2: { value: function(m) { var matrix = glmat4.transpose(m, []), i = 0, j = 0, perspectiveMatrix, inversePerspectiveMatrix, transposedInversePerspectiveMatrix, perspective = [0,0,0,0], translate = [0,0,0], scale = [0,0,0], skew = [0,0,0], rotate = [0,0,0], rightHandSide = [0,0,0,0]; // Normalize the matrix. if (matrix[15] === 0) { return false; } for (i = 0; i < 4; i++) { var index = i; for (j = 0; j < 4; j++) { matrix[index] /= matrix[15]; index += 4; } } // perspectiveMatrix is used to solve for perspective, but it also provides // an easy way to test for singularity of the upper 3x3 component. perspectiveMatrix = matrix.slice(0); for (i = 0; i < 3; i++) { perspectiveMatrix[i+12] = 0; } perspectiveMatrix[15] = 1; if (glmat4.determinant(perspectiveMatrix) === 0) { return false; } // First, isolate perspective. if (matrix[12] !== 0 || matrix[13] !== 0 || matrix[14] !== 0) { // rightHandSide is the right hand side of the equation. rightHandSide[0] = matrix[12]; rightHandSide[1] = matrix[13]; rightHandSide[2] = matrix[14]; rightHandSide[3] = matrix[15]; // Solve the equation by inverting perspectiveMatrix and multiplying // rightHandSide by the inverse. //inversePerspectiveMatrix = perspectiveMatrix.inverse(); inversePerspectiveMatrix = glmat4.inverse( perspectiveMatrix, []); transposedInversePerspectiveMatrix = glmat4.transpose(inversePerspectiveMatrix, []); perspective = MathUtils.transformPoint(rightHandSide, transposedInversePerspectiveMatrix); // Clear the perspective partition matrix[12] = matrix[13] = matrix[14] = 0; matrix[15] = 1; } else { // No perspective. perspective[0] = perspective[1] = perspective[2] = 0; perspective[3] = 1; } // Next take care of translation translate[0] = matrix[3]; matrix[3] = 0; translate[1] = matrix[7]; matrix[7] = 0; translate[2] = matrix[11]; matrix[11] = 0; // Now get scale and shear. 'row' is a 3 element array of 3 component vectors var row = Matrix.I(4); for (i = 0; i < 3; i++) { row[i ] = matrix[i ]; row[i+4] = matrix[i+4]; row[i+8] = matrix[i+8]; } // Compute X scale factor and normalize first row. var rowX = [row[0], row[0+4], row[0+8]]; var rowY = [row[1], row[1+4], row[1+8]]; var rowZ = [row[2], row[2+4], row[2+8]]; scale[0] = VecUtils.vecMag(3, rowX); rowX = VecUtils.vecNormalize(3, rowX); row[0] = rowX[0]; row[4] = rowX[1]; row[8] = rowX[2]; // Compute XY shear factor and make 2nd row orthogonal to 1st. skew[0] = VecUtils.vecDot(3, rowX, rowY); rowY = this.combine(rowY, rowX, 1.0, -skew[0]); // Now, compute Y scale and normalize 2nd row. scale[1] = VecUtils.vecMag(3, rowY); rowY = VecUtils.vecNormalize(3, rowY); skew[0] /= scale[1]; row[1] = rowY[0]; row[5] = rowY[1]; row[9] = rowY[2]; // Compute XZ and YZ shears, orthogonalize 3rd row skew[1] = VecUtils.vecDot(3, rowX, rowZ); rowZ = this.combine(rowZ, rowX, 1.0, -skew[1]); skew[2] = VecUtils.vecDot(3, rowY, rowZ); rowZ = this.combine(rowZ, rowY, 1.0, -skew[2]); // Next, get Z scale and normalize 3rd row. scale[2] = VecUtils.vecMag(3, rowZ); rowZ = VecUtils.vecNormalize(3, rowZ); skew[1] /= scale[2]; skew[2] /= scale[2]; row[ 2] = rowZ[0]; row[ 6] = rowZ[1]; row[10] = rowZ[2]; // At this point, the matrix (in rows) is orthonormal. // Check for a coordinate system flip. If the determinant // is -1, then negate the matrix and the scaling factors. var pdum3 = VecUtils.vecCross(3, rowY, rowZ); if (VecUtils.vecDot(3, rowX, pdum3) < 0) { for (i = 0; i < 3; i++) { scale[0] *= -1; row[i ] *= -1 row[i+4] *= -1 row[i+8] *= -1 } } // Now, get the rotations out rotate[1] = Math.asin(-row[8]); if (Math.cos(rotate[1]) !== 0) { rotate[0] = Math.atan2(row[9], row[10]); rotate[2] = Math.atan2(row[4], row[ 0]); } else { rotate[0] = Math.atan2(-row[2], row[5]); rotate[2] = 0; } return {translation: translate, rotation: rotate, scale: scale, skew: skew, perspective: perspective}; } }, /** * Helper function required for matrix decomposition * A Javascript implementation of pseudo code available from http://www.w3.org/TR/css3-2d-transforms/#matrix-decomposition * @param {Vector4} aPoint A 3D point * @param {float} ascl * @param {float} bscl * @author Joe Lambert * @returns {Vector4} */ combine: { value: function(a, b, ascl, bscl) { var result = [0,0,0]; result[0] = (ascl * a[0]) + (bscl * b[0]) result[1] = (ascl * a[1]) + (bscl * b[1]) result[2] = (ascl * a[2]) + (bscl * b[2]) return result } } });