/*
Copyright (c) 2012, Motorola Mobility, Inc
All Rights Reserved.
BSD License.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of Motorola Mobility nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
///////////////////////////////////////////////////////////////////////
// Class Utils
// Math Utility functions
///////////////////////////////////////////////////////////////////////
var VecUtils = require("js/helper-classes/3D/vec-utils").VecUtils,
ViewUtils = require("js/helper-classes/3D/view-utils").ViewUtils,
Rectangle = require("js/helper-classes/3D/rectangle").Rectangle;
var MathUtilsClass = exports.MathUtilsClass = Object.create(Object.prototype, {
///////////////////////////////////////////////////////////////////////
// Instance variables
///////////////////////////////////////////////////////////////////////
// VecUtils: { value: null, writable: true },
EPSILON: { value: 1.e-5, writable: true },
// these are used in containment tests
INSIDE: { value: -1, writable: true },
ON: { value: 0, writable: true },
OUTSIDE: { value: 1, writable: true },
PI2: { value: 2*Math.PI, writable: true },
RAD_TO_DEG: { value: 180/Math.PI, writable: true },
DEG_TO_RAD: { value: Math.PI/180, writable: true },
///////////////////////////////////////////////////////////////////////
// Property accessors
///////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////
// Vector Methods
///////////////////////////////////////////////////////////////////////
vecIntersectPlaneForParam: {
value: function( pt0, vec, plane )
{
// declare the variable to return - undefined when there is no solution
var param;
var a = plane[0], b = plane[1], c = plane[2], d = plane[3];
var dx = vec[0], dy = vec[1], dz = vec[2];
var x0 = pt0[0], y0 = pt0[1], z0 = pt0[2];
var numerator = -(a*x0 + b*y0 + c*z0 + d);
var denominator = a*dx + b*dy + c*dz;
var rtnPt;
if (this.fpSign(denominator) != 0)
param = numerator / denominator;
return param;
}
},
vecMag3: {
value: function( vec )
{
if (vec.length < 3) return;
var mag = vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2];
mag = Math.sqrt( mag );
return mag;
}
},
vecMag: {
value: function( dimen, vec )
{
var sum = 0.0;
for (var i=0; i 0)
{
rtnVec = [0];
for (var i=0; i 0)
{
rtnVec = [0];
for (var i=0; i 0)
{
var sum = 0.0;
for (var i=0; i Math.abs(plane[1]) )
{
if ( Math.abs(plane[0]) > Math.abs(plane[2]) )
x = -d/a;
else
z = -d/c;
}
else
{
if (Math.abs(plane[1]) > Math.abs(plane[2]) )
y = -d/b;
else
z = -d/c;
}
// get the point on the plane
return [x, y, z];
}
},
transformPlane: {
value: function( plane, mat )
{
// we will project a point down one of the coordinate axes to find a point on the plane
// that point and the normal to the plane will be transformed by the matrix, and the 'd'
// component of the plane equation will be reset using the new normal and point.
// find a point on the plane
var ptOnPlane = this.getPointOnPlane(plane);
ptOnPlane[3] = 1.0; // 4 dimen so we can transform it
// transform the point
//ptOnPlane = mat.multiply( ptOnPlane );
ptOnPlane = glmat4.multiplyVec3(mat, ptOnPlane, []);
plane = this.transformVector( plane, mat );
plane[3] = -this.dot3(plane, ptOnPlane );
return plane;
}
},
transformHomogeneousPoint: {
value: function( srcPt, mat )
{
var pt = srcPt.slice(0);
this.makeDimension4( pt );
var x = VecUtils.vecDot(4, pt, [mat[0], mat[4], mat[ 8], mat[12]] ),
y = VecUtils.vecDot(4, pt, [mat[1], mat[5], mat[ 9], mat[13]] ),
z = VecUtils.vecDot(4, pt, [mat[2], mat[6], mat[10], mat[14]] ),
w = VecUtils.vecDot(4, pt, [mat[3], mat[7], mat[11], mat[15]] );
return [x, y, z, w];
}
},
applyHomogeneousCoordinate: {
value: function( hPt )
{
var w = hPt[3];
hPt[0] /= w;
hPt[1] /= w;
hPt[2] /= w;
hPt[3] = 1;
return hPt;
}
},
transformAndDivideHomogeneousPoint: {
value: function( pt, mat )
{
return this.applyHomogeneousCoordinate( this.transformHomogeneousPoint(pt, mat) );
}
},
transformPoint: {
value: function( srcPt, mat )
{
var pt = srcPt.slice(0);
this.makeDimension3( pt );
var x = VecUtils.vecDot(3, pt, [mat[0], mat[4], mat[ 8]] ) + mat[12],
y = VecUtils.vecDot(3, pt, [mat[1], mat[5], mat[ 9]] ) + mat[13],
z = VecUtils.vecDot(3, pt, [mat[2], mat[6], mat[10]] ) + mat[14];
return [x, y, z];
}
},
transformVector: {
value: function( vec, mat )
{
this.makeDimension3( vec );
var x = VecUtils.vecDot(3, vec, [mat[0], mat[4], mat[ 8]] ),
y = VecUtils.vecDot(3, vec, [mat[1], mat[5], mat[ 9]] ),
z = VecUtils.vecDot(3, vec, [mat[2], mat[6], mat[10]] );
return [x, y, z];
}
},
interpolateLine3D: {
value: function( pt0, pt1, t )
{
var x0 = pt0[0], y0 = pt0[1], z0 = pt0[2],
x1 = pt1[0], y1 = pt1[1], z1 = pt1[2];
var pt = [ x0 + t*(x1 - x0), y0 + t*(y1 - y0), z0 + t*(z1 - z0) ];
return pt;
}
},
dot: {
value: function( v0, v1 )
{
var dimen = v0.length;
if (v1.length < v0.length) dimen = v1.length;
var sum = 0.0;
for (var i=0; i 1.0 || Math.abs(paramSeg1) > 1.0)) {
return null; //no intersection unless the the intersection point lies on both segments
}
var intPt = [seg0Start[0] + paramSeg0 * (seg0End[0] - seg0Start[0]), seg0Start[1] + paramSeg0 * (seg0End[1] - seg0Start[1])];
return intPt;
}
}, //this.segSegIntersection = function (seg0, seg1)
distPointToRay: {
value: function (pt, rayOrig, rayDir)
{
var rayMagSq = rayDir[0]*rayDir[0] + rayDir[1]*rayDir[1] + rayDir[2]*rayDir[2]; //sq. of the ray direction magnitude (need not be 1)
//find the projection of pt on ray
var U = (
( (pt[0] - rayOrig[0] ) * ( rayDir[0]) ) +
( (pt[1] - rayOrig[1] ) * ( rayDir[1]) ) +
( (pt[2] - rayOrig[2] ) * ( rayDir[2]) )
) / ( rayMagSq );
if( U < 0.0 ) {
// closest point falls behind rayOrig
// so return the min. of distance to rayOrig
return this.vecDist(rayOrig, pt);
}//if( U < 0.0) {
var intersection = [ rayOrig[0] + U * (rayDir[0]), rayOrig[1] + U * (rayDir[1]), rayOrig[2] + U * (rayDir[2])];
return this.vecDist(intersection, pt);
}
},
//returns the parameter value of projection of pt on SegP0P1 (param. at P0 is 0, param at P1 is 1)
paramPointProjectionOnSegment: {
value: function(pt, segP0, segP1){
var segMag = this.vecDist(segP0, segP1);
return (
( (pt[0] - segP0[0] ) * ( segP1[0] - segP0[0]) ) +
( (pt[1] - segP0[1] ) * ( segP1[1] - segP0[1]) ) +
( (pt[2] - segP0[2] ) * ( segP1[2] - segP0[2]) )
) / ( segMag * segMag );
}
},
//returns the distance of pt to segment P0P1
// note the distance is to segment, not to line
distPointToSegment: {
value: function (pt, segP0, segP1)
{
var U = this.paramPointProjectionOnSegment(pt, segP0, segP1);
if( U < 0.0 || U > 1.0 ) {
// closest point does not fall within the segment
// so return the min. of distance to segment endpoints
var distToP0 = this.vecDist(segP0, pt);
var distToP1 = this.vecDist(segP1, pt);
if (distToP0 < distToP1) {
return distToP0;
} else {
return distToP1;
}
}//if( U < 0.0 || U > 1.0 ) {
var intersection = [ segP0[0] + U * (segP1[0] - segP0[0]), segP0[1] + U * (segP1[1] - segP0[1]), segP0[2] + U * (segP1[2] - segP0[2])];
return this.vecDist(intersection, pt);
}
},
nearestPointOnLine2D: {
value: function( linePt, lineDir, pt )
{
var vec = this.vecSubtract( pt, linePt );
var dot = this.dot( lineDir, vec );
var mag = this.vecMag(2,lineDir);
if (this.fpSign(mag) == 0) return;
var d = dot/mag;
var dVec = VecUtils.vecNormalize( 2, lineDir, d );
return this.vecAdd( linePt, dVec );
}
},
parameterizePointOnLine2D: {
value: function( linePt, lineDir, ptOnLine )
{
var t;
if (Math.abs(lineDir[0]) > Math.abs(lineDir[1]))
{
var x1 = linePt[0] + lineDir[0];
if (this.fpCmp(ptOnLine[0],x1) == 0)
t = 1.0;
else
t = (ptOnLine[0] - linePt[0]) / (linePt[0]+lineDir[0] - linePt[0]);
}
else
{
var y1 = linePt[1] + lineDir[1];
if (this.fpCmp(ptOnLine[1],y1) == 0)
t = 1.0;
else
t = (ptOnLine[1] - linePt[1]) / (linePt[1]+lineDir[1] - linePt[1]);
}
return t;
}
},
pointsEqual: {
value: function( dimen, a, b )
{
if ((a.length < dimen) || (b.length < dimen))
throw new Error( "dimension error in VecUtils.vecAdd" );
for (var i=0; i 4)
{
for (var i=0; i 3)
{
for (var i=0; i= 0)
str = str.substr( 0, index );
var n = Number( str );
return n;
}
},
isIdentityMatrix: {
value: function( mat )
{
if(!mat)
{
return false;
}
else
{
if(mat[0] !== 1) return false;
if(mat[1] !== 0) return false;
if(mat[2] !== 0) return false;
if(mat[3] !== 0) return false;
if(mat[4] !== 0) return false;
if(mat[5] !== 1) return false;
if(mat[6] !== 0) return false;
if(mat[7] !== 0) return false;
if(mat[8] !== 0) return false;
if(mat[9] !== 0) return false;
if(mat[10] !== 1) return false;
if(mat[11] !== 0) return false;
if(mat[12] !== 0) return false;
if(mat[13] !== 0) return false;
if(mat[14] !== 0) return false;
if(mat[15] !== 1) return false;
}
return true;
}
},
rectsOverlap:
{
value: function( pt, width, height, elt )
{
// only consider rectangles with non-zero area
if ((width == 0) || (height == 0)) return false;
// get the mins/maxs of the onput rectangle
var xMin, xMax, yMin, yMax;
if (width > 0) { xMin = pt[0]; xMax = pt[0] + width; }
else { xMax = pt[0]; xMin = pt[0] + width; }
if (height > 0) { yMin = pt[1]; yMax = pt[1] + height; }
else { yMax = pt[1]; yMin = pt[1] + height; }
// get the bounds of the element in global screen space
var bounds = ViewUtils.getElementViewBounds3D( elt );
var bounds3D = [];
for (var i=0; i<4; i++)
bounds3D[i] = ViewUtils.localToGlobal( bounds[i], elt );
// get the min/maxs for the element
var xMinElt = bounds3D[0][0], xMaxElt = bounds3D[0][0],
yMinElt = bounds3D[0][1], yMaxElt = bounds3D[0][1];
for (var i=1; i<4; i++)
{
if (bounds3D[i][0] < xMinElt) xMinElt = bounds3D[i][0];
else if (bounds3D[i][0] > xMaxElt) xMaxElt = bounds3D[i][0];
if (bounds3D[i][1] < yMinElt) yMinElt = bounds3D[i][1];
else if (bounds3D[i][1] > yMaxElt) yMaxElt = bounds3D[i][1];
}
// test 1. Overall bounding box test
if ((xMaxElt < xMin) || (xMinElt > xMax) || (yMaxElt < yMin) || (yMinElt > yMax))
return false;
// test 2. See if any of the corners of the element are contained in the rectangle
var rect = Object.create(Rectangle, {});
rect.set( pt[0], pt[1], width, height );
for (var i=0; i<4; i++)
{
if (rect.contains( bounds3D[i][0], bounds3D[i][1] )) return true;
}
// test 3. Bounding box tests on individual edges of the element
for (var i=0; i<4; i++)
{
var pt0 = bounds3D[i],
pt1 = bounds3D[(i+1)%4];
// get the extremes of the edge
if (pt0[0] < pt1[0]) { xMinElt = pt0[0]; xMaxElt = pt1[0]; }
else { xMaxElt = pt0[0]; xMinElt = pt1[0]; }
if (pt0[1] < pt1[1]) { yMinElt = pt0[1]; yMaxElt = pt1[1]; }
else { yMaxElt = pt0[1]; yMinElt = pt1[1]; }
if ((xMaxElt < xMin) || (xMinElt > xMax) || (yMaxElt < yMin) || (yMinElt > yMax))
continue;
else
{
// intersect the element edge with the 4 sides of the rectangle
// vertical edges
var xRect = xMin;
for (var j=0; j<2; j++)
{
if ((xMinElt < xRect) && (xMaxElt > xRect))
{
var t = (xRect - pt0[0])/(pt1[0] - pt0[0]);
var y = pt0[1] + t*(pt1[1] - pt0[1]);
if ((y >= yMin) && (y <= yMax)) return true;
}
xRect = xMax;
}
// horizontal edges
var yRect = yMin;
for (var j=0; j<2; j++)
{
if ((yMinElt < yRect) && (yMaxElt > yRect))
{
var t = (yRect - pt0[1])/(pt1[1] - pt0[1]);
var x = pt0[0] + t*(pt1[0] - pt0[0]);
if ((x >= xMin) && (x <= xMax)) return true;
}
yRect = yMax;
}
}
}
// if we get here there is no overlap
return false;
}
},
///////////////////////////////////////////////////////////////////////
// Bezier Methods
///////////////////////////////////////////////////////////////////////
// this function returns the quadratic Bezier approximation to the specified
// circular arc. The input can be 2D or 3D, determined by the minimum dimension
// of the center and start point.
// includedAngle is in radians, can be positiveor negative
circularArcToBezier: {
value: function( ctr_, startPt_, includedAngle )
{
var dimen = 3;
var ctr = ctr_.slice(); MathUtils.makeDimension3( ctr );
var startPt = startPt_.slice(); MathUtils.makeDimension3( startPt );
// make sure the start point is good
var pt = VecUtils.vecSubtract(dimen, startPt, ctr);
var rad = VecUtils.vecMag(dimen, pt);
if ((dimen != 3) || (MathUtils.fpSign(rad) <= 0) || (MathUtils.fpSign(includedAngle) == 0))
{
if (dimen != 3) console.log( "MathUtils.circularArcToBezier works for 3 dimensional points only. Was " + dimen );
return [ startPt.slice(0), startPt.slice(0), startPt.slice(0) ];
}
// determine the number of segments. 45 degree span maximum.
var nSegs = Math.ceil( Math.abs(includedAngle)/(0.25*Math.PI) );
if (nSegs <= 0) return [ startPt.slice(0), startPt.slice(0), startPt.slice(0) ];
var dAngle = includedAngle/nSegs;
// determine the length of the center control point from the circle center
var cs = Math.cos( 0.5*Math.abs(dAngle) ), sn = Math.sin( 0.5*Math.abs(dAngle) );
var c = rad*sn;
var h = c*sn/cs;
var d = rad*cs + h;
var rtnPts = [ VecUtils.vecAdd(dimen, pt, ctr) ];
var rotMat = Matrix.RotationZ( dAngle );
for ( var i=0; i maxVals[i]) maxVals[i] = bounds[iPt][i];
}
}
var ctr = VecUtils.vecAdd(dimen, minVals, maxVals);
VecUtils.vecScale( dimen, ctr, 0.5 );
return ctr;
}
},
boundaryContainsPoint: {
value: function( bounds, targetPt, backFacing )
{
var pt = targetPt.slice(0);
while (pt.length > 2) pt.pop();
// this function returns -1 for inside, 0 for on and 1 for outside.
// values defined as instance variables above
var nPts = bounds.length;
var pt1 = bounds[nPts-1].slice(0);
while (pt1.length > 2) pt1.pop();
for (var i=0; i 2) pt1.pop();
var vec0 = VecUtils.vecSubtract(2, pt1, pt0 );
if (vec0.length == 3) vec0.pop();
// get a vector from the target point to pt0
//var vec1 = pt.subtract( pt0 );
var vec1 = VecUtils.vecSubtract(2, pt, pt0 );
if (vec1.length == 3) vec1.pop();
// look at the cross product of the 2 vectors
var cross = VecUtils.vecCross(2, vec0, vec1 );
var sign = this.fpSign( cross );
if (sign == 0)
{
//var t = vec1.modulus() / vec0.modulus();
var t = VecUtils.vecMag(2, vec1)/VecUtils.vecMag(2, vec0);
if ((this.fpSign(t) >= 0) && (this.fpCmp(t,1.0) <= 0))
return this.ON;
else
return this.OUTSIDE;
}
if (backFacing)
{
if (this.fpSign(cross) < 0) return this.OUTSIDE;
}
else
{
if (this.fpSign(cross) > 0) return this.OUTSIDE;
}
}
return this.INSIDE;
}
},
///////////////////////////////////////////////////////////////////////
// floating point Methods
///////////////////////////////////////////////////////////////////////
fpSign: {
value: function( d )
{
var sign = 0;
if (d < -this.EPSILON) sign = -1;
else if (d > this.EPSILON) sign = 1;
return sign;
}
},
fpCmp: {
value: function(x,y)
{
return this.fpSign( x-y );
}
},
///////////////////////////////////////////////////////////////////////
// Utility method to convert numbers in scientific notation to decimal.
// This is needed for matrix3d which does not support values in
// scientific notation (that are often returned by Matrix calculations).
// You pass in the flattened Array value of the Matrix (arr) and the
// desired number of significant digits after the decimal (sigDig).
///////////////////////////////////////////////////////////////////////
scientificToDecimal: {
value: function(arr, sigDig)
{
if(!sigDig)
{
sigDig = 10;
}
var arrLen = arr.length;
for(var k=0; k 1) c = 1.0;
c *= 255;
var h = c.toString(16);
if (h.length < 2) h = "0" + h;
if (h.length < 2) h = "0" + h;
str = str + h;
}
return str;
}
},
///////////////////////////////////////////////////////////////////////
// Utility method to calculate angle between two vectors from origin
///////////////////////////////////////////////////////////////////////
getAngleBetweenVectors: {
value: function(v0, v1)
{
var dot = this.dot3(v0, v1);
var v0Mag = this.vecMag3(v0);
var v1Mag = this.vecMag3(v1);
var angle = Math.acos(dot / (v0Mag*v1Mag));
return angle;
}
},
// Simple decomposition that does not take scale or perspective into account
decomposeMatrix: {
value: function(m)
{
var rY = Math.atan2(-m[2], m[10]) * this.RAD_TO_DEG;
var rX = Math.asin(m[6]) * this.RAD_TO_DEG;
var rZ = Math.atan2(-m[4], m[5]) * this.RAD_TO_DEG;
return {rotX: rX, rotY: rY, rotZ: rZ};
}
},
/**
* decompose matrix in javascript found at https://github.com/joelambert/morf/blob/master/js/src/WebkitCSSMatrix.ext.js
* used with permission from Joe Lambert: "as long as the original licence text and attribution is left in then you're
* good to use it as you see fit."
*
* WebKitCSSMatrix Extensions
*
* Copyright 2011, Joe Lambert (http://www.joelambert.co.uk)
* Free to use under the MIT license.
* http://joelambert.mit-license.org/
*/
/**
* Decomposes the matrix into its component parts.
* A Javascript implementation of the pseudo code available from http://www.w3.org/TR/css3-2d-transforms/#matrix-decomposition
* @author Joe Lambert
* @returns {Object} An object with each of the components of the matrix (perspective, translate, skew, scale, rotate) or identity matrix on failure
*/
// Input: matrix ; a 4x4 matrix
// Output: translation ; a 3 component vector
// rotation ; Euler angles, represented as a 3 component vector
// scale ; a 3 component vector
// skew ; skew factors XY,XZ,YZ represented as a 3 component vector
// perspective ; a 4 component vector
// Returns false if the matrix cannot be decomposed. An object with the above output values if it can.
decomposeMatrix2: {
value: function(m)
{
var matrix = glmat4.transpose(m, []),
i = 0,
j = 0,
perspectiveMatrix,
inversePerspectiveMatrix,
transposedInversePerspectiveMatrix,
perspective = [0,0,0,0],
translate = [0,0,0],
scale = [0,0,0],
skew = [0,0,0],
rotate = [0,0,0],
rightHandSide = [0,0,0,0];
// Normalize the matrix.
if (matrix[15] === 0)
{
return false;
}
for (i = 0; i < 4; i++)
{
var index = i;
for (j = 0; j < 4; j++)
{
matrix[index] /= matrix[15];
index += 4;
}
}
// perspectiveMatrix is used to solve for perspective, but it also provides
// an easy way to test for singularity of the upper 3x3 component.
perspectiveMatrix = matrix.slice(0);
for (i = 0; i < 3; i++)
{
perspectiveMatrix[i+12] = 0;
}
perspectiveMatrix[15] = 1;
if (glmat4.determinant(perspectiveMatrix) === 0)
{
return false;
}
// First, isolate perspective.
if (matrix[12] !== 0 || matrix[13] !== 0 || matrix[14] !== 0)
{
// rightHandSide is the right hand side of the equation.
rightHandSide[0] = matrix[12];
rightHandSide[1] = matrix[13];
rightHandSide[2] = matrix[14];
rightHandSide[3] = matrix[15];
// Solve the equation by inverting perspectiveMatrix and multiplying
// rightHandSide by the inverse.
//inversePerspectiveMatrix = perspectiveMatrix.inverse();
inversePerspectiveMatrix = glmat4.inverse( perspectiveMatrix, []);
transposedInversePerspectiveMatrix = glmat4.transpose(inversePerspectiveMatrix, []);
perspective = MathUtils.transformPoint(rightHandSide, transposedInversePerspectiveMatrix);
// Clear the perspective partition
matrix[12] = matrix[13] = matrix[14] = 0;
matrix[15] = 1;
}
else
{
// No perspective.
perspective[0] = perspective[1] = perspective[2] = 0;
perspective[3] = 1;
}
// Next take care of translation
translate[0] = matrix[3];
matrix[3] = 0;
translate[1] = matrix[7];
matrix[7] = 0;
translate[2] = matrix[11];
matrix[11] = 0;
// Now get scale and shear. 'row' is a 3 element array of 3 component vectors
var row = Matrix.I(4);
for (i = 0; i < 3; i++)
{
row[i ] = matrix[i ];
row[i+4] = matrix[i+4];
row[i+8] = matrix[i+8];
}
// Compute X scale factor and normalize first row.
var rowX = [row[0], row[0+4], row[0+8]];
var rowY = [row[1], row[1+4], row[1+8]];
var rowZ = [row[2], row[2+4], row[2+8]];
scale[0] = VecUtils.vecMag(3, rowX);
rowX = VecUtils.vecNormalize(3, rowX);
row[0] = rowX[0];
row[4] = rowX[1];
row[8] = rowX[2];
// Compute XY shear factor and make 2nd row orthogonal to 1st.
skew[0] = VecUtils.vecDot(3, rowX, rowY);
rowY = this.combine(rowY, rowX, 1.0, -skew[0]);
// Now, compute Y scale and normalize 2nd row.
scale[1] = VecUtils.vecMag(3, rowY);
rowY = VecUtils.vecNormalize(3, rowY);
skew[0] /= scale[1];
row[1] = rowY[0];
row[5] = rowY[1];
row[9] = rowY[2];
// Compute XZ and YZ shears, orthogonalize 3rd row
skew[1] = VecUtils.vecDot(3, rowX, rowZ);
rowZ = this.combine(rowZ, rowX, 1.0, -skew[1]);
skew[2] = VecUtils.vecDot(3, rowY, rowZ);
rowZ = this.combine(rowZ, rowY, 1.0, -skew[2]);
// Next, get Z scale and normalize 3rd row.
scale[2] = VecUtils.vecMag(3, rowZ);
rowZ = VecUtils.vecNormalize(3, rowZ);
skew[1] /= scale[2];
skew[2] /= scale[2];
row[ 2] = rowZ[0];
row[ 6] = rowZ[1];
row[10] = rowZ[2];
// At this point, the matrix (in rows) is orthonormal.
// Check for a coordinate system flip. If the determinant
// is -1, then negate the matrix and the scaling factors.
var pdum3 = VecUtils.vecCross(3, rowY, rowZ);
if (VecUtils.vecDot(3, rowX, pdum3) < 0)
{
for (i = 0; i < 3; i++)
{
scale[0] *= -1;
row[i ] *= -1
row[i+4] *= -1
row[i+8] *= -1
}
}
// Now, get the rotations out
rotate[1] = Math.asin(-row[8]);
if (Math.cos(rotate[1]) !== 0)
{
rotate[0] = Math.atan2(row[9], row[10]);
rotate[2] = Math.atan2(row[4], row[ 0]);
}
else
{
rotate[0] = Math.atan2(-row[2], row[5]);
rotate[2] = 0;
}
return {translation: translate,
rotation: rotate,
scale: scale,
skew: skew,
perspective: perspective};
}
},
/**
* Helper function required for matrix decomposition
* A Javascript implementation of pseudo code available from http://www.w3.org/TR/css3-2d-transforms/#matrix-decomposition
* @param {Vector4} aPoint A 3D point
* @param {float} ascl
* @param {float} bscl
* @author Joe Lambert
* @returns {Vector4}
*/
combine: {
value: function(a, b, ascl, bscl)
{
var result = [0,0,0];
result[0] = (ascl * a[0]) + (bscl * b[0])
result[1] = (ascl * a[1]) + (bscl * b[1])
result[2] = (ascl * a[2]) + (bscl * b[2])
return result
}
}
});