/* This file contains proprietary software owned by Motorola Mobility, Inc.
No rights, expressed or implied, whatsoever to this software are provided by Motorola Mobility, Inc. hereunder.
(c) Copyright 2011 Motorola Mobility, Inc. All Rights Reserved.
*/ // Helper function for generating a RDGE primitive var ShapePrimitive = {}; ShapePrimitive.create = function(coords, normals, uvs, indices, primType, vertexCount) { var renderer = RDGE.globals.engine.getContext().renderer; // to setup a primitive you must define it // create a new primitive definition here to then fill out var prim = new RDGE.rdgePrimitiveDefinition(); // the vertex definition declares how the data will be delivered to the shader // the position of an element in array determines which attribute in a shader the // data is bound to prim.vertexDefinition = { // this shows two ways to map this data to an attribute "vert":{'type':renderer.VS_ELEMENT_POS, 'bufferIndex':0, 'bufferUsage': renderer.BUFFER_STATIC}, "a_pos":{'type':renderer.VS_ELEMENT_POS, 'bufferIndex':0, 'bufferUsage': renderer.BUFFER_STATIC}, "normal":{'type':renderer.VS_ELEMENT_FLOAT3, 'bufferIndex':1, 'bufferUsage': renderer.BUFFER_STATIC}, "a_nrm":{'type':renderer.VS_ELEMENT_FLOAT3, 'bufferIndex':1, 'bufferUsage': renderer.BUFFER_STATIC}, "a_normal":{'type':renderer.VS_ELEMENT_FLOAT3, 'bufferIndex':1, 'bufferUsage': renderer.BUFFER_STATIC}, "texcoord":{'type':renderer.VS_ELEMENT_FLOAT2, 'bufferIndex':2, 'bufferUsage': renderer.BUFFER_STATIC}, "a_texcoord":{'type':renderer.VS_ELEMENT_FLOAT2, 'bufferIndex':2, 'bufferUsage': renderer.BUFFER_STATIC} }; // the actual data that correlates to the vertex definition prim.bufferStreams = [ coords, normals, uvs ]; // what type of buffers the data resides in, static is the most common case prim.streamUsage = [ renderer.BUFFER_STATIC, renderer.BUFFER_STATIC, renderer.BUFFER_STATIC ]; // this tells the renderer to draw the primitive as a list of triangles prim.type = primType; prim.indexUsage = renderer.BUFFER_STREAM; prim.indexBuffer = indices; // finally the primitive is created, buffers are generated and the system determines // the data it needs to draw this primitive according to the previous definition renderer.createPrimitive(prim, vertexCount); return prim; }; ShapePrimitive.getMeshBounds = function( verts, nVerts ) { if (!verts || (nVerts <= 0)) return null; var bounds = [verts[0], verts[1], verts[2], verts[0], verts[1], verts[2]]; var index = 3; for (var i=1; i bounds[3]) bounds[3] = x; if (y < bounds[1]) bounds[1] = y; else if (y > bounds[4]) bounds[4] = y; if (z < bounds[2]) bounds[2] = z; else if (z > bounds[5]) bounds[5] = z; } return bounds; }; ShapePrimitive.getBounds = function( prim ) { var verts = prim.bufferStreams[0]; var nVerts = verts.length; var xMin = verts[0], xMax = verts[0], yMin = verts[1], yMax = verts[1], zMin = verts[2], zMax = verts[2]; for (var index=3; index xMax) xMax = verts[index]; index++; if (verts[index] < yMin) yMin = verts[index]; else if (verts[index] > yMax) yMax = verts[index]; index++; if (verts[index] < zMin) zMin = verts[index]; else if (verts[index] > zMax) zMax = verts[index]; index++; } return [xMin, yMin, zMin, xMax, yMax, zMax]; }; ShapePrimitive.refineMesh = function( verts, norms, uvs, indices, nVertices, paramRange, tolerance ) { var oldVrtCount = nVertices; // get the param range var pUMin = paramRange[0], pVMin = paramRange[1], pUMax = paramRange[2], pVMax = paramRange[3]; var iTriangle = 0; var nTriangles = indices.length/3; var index = 0; while (iTriangle < nTriangles) { // get the indices of the 3 vertices var i0 = indices[index], i1 = indices[index+1], i2 = indices[index+2]; // get the uv values //var vrtIndex = 3*iTriangle; var iuv0 = 2 * i0, iuv1 = 2 * i1, iuv2 = 2 * i2; var u0 = uvs[iuv0], v0 = uvs[iuv0+1], u1 = uvs[iuv1], v1 = uvs[iuv1+1], u2 = uvs[iuv2], v2 = uvs[iuv2+1]; // find the u and v range var uMin = u0, vMin = v0; if (u1 < uMin) uMin = u1; if (v1 < vMin) vMin = v1; if (u2 < uMin) uMin = u2; if (v2 < vMin) vMin = v2; var uMax = u0, vMax = v0; if (u1 > uMax) uMax = u1; if (v1 > vMax) vMax = v1; if (u2 > uMax) uMax = u2; if (v2 > vMax) vMax = v2; // if the parameter range of the triangle is outside the // desired parameter range, advance to the next polygon and continue if ((uMin > pUMax) || (uMax < pUMin) || (vMin > pVMax) || (vMax < pVMin)) { // go to the next triangle iTriangle++; index += 3; } else { // check thesize of the triangle in uv space. If small enough, advance // to the next triangle. If not small enough, split the triangle into 3; var du = uMax - uMin, dv = vMax - vMin; if ((du < tolerance) && (dv < tolerance)) { iTriangle++; index += 3; } else // split the triangle into 4 parts { //calculate the position of the new vertex var iPt0 = 3 * i0, iPt1 = 3 * i1, iPt2 = 3 * i2; var x0 = verts[iPt0], y0 = verts[iPt0+1], z0 = verts[iPt0+2], x1 = verts[iPt1], y1 = verts[iPt1+1], z1 = verts[iPt1+2], x2 = verts[iPt2], y2 = verts[iPt2+1], z2 = verts[iPt2+2]; // calculate the midpoints of the edges var xA = (x0 + x1)/2.0, yA = (y0 + y1)/2.0, zA = (z0 + z1)/2.0, xB = (x1 + x2)/2.0, yB = (y1 + y2)/2.0, zB = (z1 + z2)/2.0, xC = (x2 + x0)/2.0, yC = (y2 + y0)/2.0, zC = (z2 + z0)/2.0; // calculate the uv values of the new coordinates var uA = (u0 + u1)/2.0, vA = (v0 + v1)/2.0, uB = (u1 + u2)/2.0, vB = (v1 + v2)/2.0, uC = (u2 + u0)/2.0, vC = (v2 + v0)/2.0; // calculate the normals for the new points var nx0 = norms[iPt0], ny0 = norms[iPt0+1], nz0 = norms[iPt0+2], nx1 = norms[iPt1], ny1 = norms[iPt1+1], nz1 = norms[iPt1+2], nx2 = norms[iPt2], ny2 = norms[iPt2+1], nz2 = norms[iPt2+2]; var nxA = (nx0 + nx1), nyA = (ny0 + ny1), nzA = (nz0 + nz1); var nrmA = VecUtils.vecNormalize(3, [nxA, nyA, nzA], 1.0 ), nxB = (nx1 + nx2), nyB = (ny1 + ny2), nzB = (nz1 + nz2); var nrmB = VecUtils.vecNormalize(3, [nxB, nyB, nzB], 1.0 ), nxC = (nx2 + nx0), nyC = (ny2 + ny0), nzC = (nz2 + nz0); var nrmC = VecUtils.vecNormalize(3, [nxC, nyC, nzC], 1.0 ); // push everything verts.push(xA); verts.push(yA); verts.push(zA); verts.push(xB); verts.push(yB); verts.push(zB); verts.push(xC); verts.push(yC); verts.push(zC); uvs.push(uA), uvs.push(vA); uvs.push(uB), uvs.push(vB); uvs.push(uC), uvs.push(vC); norms.push(nrmA[0]); norms.push(nrmA[1]); norms.push(nrmA[2]); norms.push(nrmB[0]); norms.push(nrmB[1]); norms.push(nrmB[2]); norms.push(nrmC[0]); norms.push(nrmC[1]); norms.push(nrmC[2]); // split the current triangle into 4 indices[index+1] = nVertices; indices[index+2] = nVertices+2; indices.push(nVertices); indices.push(i1); indices.push(nVertices+1); nTriangles++; indices.push(nVertices+1); indices.push(i2); indices.push(nVertices+2); nTriangles++; indices.push(nVertices); indices.push(nVertices+1); indices.push(nVertices+2); nTriangles++; nVertices += 3; // by not advancing 'index', we examine the first of the 3 triangles generated above } } } console.log( "refine mesh vertex count " + oldVrtCount + " => " + nVertices ); return nVertices; }; if (typeof exports === "object") { exports.ShapePrimitive = ShapePrimitive; }