/* This file contains proprietary software owned by Motorola Mobility, Inc.
No rights, expressed or implied, whatsoever to this software are provided by Motorola Mobility, Inc. hereunder.
(c) Copyright 2011 Motorola Mobility, Inc. All Rights Reserved.
*/ /* Derived from http://code.google.com/p/es-lab/source/browse/trunk/src/ses/WeakMap.js Added the export Removed the check for ses // Copyright (C) 2011 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. */ /** * @fileoverview Install a leaky WeakMap emulation on platforms that * don't provide a built-in one. * *

Assumes that an ES5 platform where, if {@code WeakMap} is * already present, then it conforms to the anticipated ES6 * specification. To run this file on an ES5 or almost ES5 * implementation where the {@code WeakMap} specification does not * quite conform, run repairES5.js first. * * @author Mark S. Miller * @requires ses * @overrides WeakMap */ /** @module montage/core/shim/weak-map */ /** * This {@code WeakMap} emulation is observably equivalent to the * ES-Harmony WeakMap, but with leakier garbage collection properties. * * As with true WeakMaps, in this emulation, a key does not * retain maps indexed by that key and (crucially) a map does not * retain the keys it indexes. A map by itself also does not retain * the values associated with that map. *

However, the values associated with a key in some map are * retained so long as that key is retained and those associations are * not overridden. For example, when used to support membranes, all * values exported from a given membrane will live for the lifetime * they would have had in the absence of an interposed membrane. Even * when the membrane is revoked, all objects that would have been * reachable in the absence of revocation will still be reachable, as * far as the GC can tell, even though they will no longer be relevant * to ongoing computation. * *

The API implemented here is approximately the API as implemented * in FF6.0a1 and agreed to by MarkM, Andreas Gal, and Dave Herman, * rather than the offially approved proposal page. TODO(erights): * upgrade the ecmascript WeakMap proposal page to explain this API * change and present to EcmaScript committee for their approval. *

The first difference between the emulation here and that in * FF6.0a1 is the presence of non enumerable {@code get___, has___, * set___, and delete___} methods on WeakMap instances to represent * what would be the hidden internal properties of a primitive * implementation. Whereas the FF6.0a1 WeakMap.prototype methods * require their {@code this} to be a genuine WeakMap instance (i.e., * an object of {@code [[Class]]} "WeakMap}), since there is nothing * unforgeable about the pseudo-internal method names used here, * nothing prevents these emulated prototype methods from being * applied to non-WeakMaps with pseudo-internal methods of the same * names. * *

Another difference is that our emulated {@code * WeakMap.prototype} is not itself a WeakMap. A problem with the * current FF6.0a1 API is that WeakMap.prototype is itself a WeakMap * providing ambient mutability and an ambient communications * channel. Thus, if a WeakMap is already present and has this * problem, repairES5.js wraps it in a safe wrappper in order to * prevent access to this channel. (See * PATCH_MUTABLE_FROZEN_WEAKMAP_PROTO in repairES5.js). @class module:montage/core/shim/weak-map.WeakMap */ var WeakMap; /** * If this is a full secureable ES5 platform and the ES-Harmony {@code WeakMap} is * absent, install an approximate emulation. * *

If this is almost a secureable ES5 platform, then WeakMap.js * should be run after repairES5.js. * *

See {@code WeakMap} for documentation of the garbage collection * properties of this WeakMap emulation. */ (function() { "use strict"; // if (typeof ses !== 'undefined' && ses.ok && !ses.ok()) { // // already too broken, so give up // return; // } if (typeof WeakMap === 'function') { // assumed fine, so we're done. return; } var hop = Object.prototype.hasOwnProperty; var gopn = Object.getOwnPropertyNames; var defProp = Object.defineProperty; /** * Holds the orginal static properties of the Object constructor, * after repairES5 fixes these if necessary to be a more complete * secureable ES5 environment, but before installing the following * WeakMap emulation overrides and before any untrusted code runs. */ var originalProps = {}; gopn(Object).forEach(function(name) { originalProps[name] = Object[name]; }); /** * Security depends on HIDDEN_NAME being both unguessable and * undiscoverable by untrusted code. * *

Given the known weaknesses of Math.random() on existing * browsers, it does not generate unguessability we can be confident * of. TODO(erights): Detect crypto.getRandomValues and if there, * use it instead. * *

It is the monkey patching logic in this file that is intended * to ensure undiscoverability. The basic idea is that there are * three fundamental means of discovering properties of an object: * The for/in loop, Object.keys(), and Object.getOwnPropertyNames(), * as well as some proposed ES6 extensions that appear on our * whitelist. The first two only discover enumerable properties, and * we only use HIDDEN_NAME to name a non-enumerable property, so the * only remaining threat should be getOwnPropertyNames and some * proposed ES6 extensions that appear on our whitelist. We monkey * patch them to remove HIDDEN_NAME from the list of properties they * returns. */ var HIDDEN_NAME = 'ident:' + Math.random() + '___'; /** * Monkey patch getOwnPropertyNames to avoid revealing the * HIDDEN_NAME. * *

The ES5.1 spec requires each name to appear only once, but as * of this writing, this requirement is controversial for ES6, so we * made this code robust against this case. If the resulting extra * search turns out to be expensive, we can probably relax this once * ES6 is adequately supported on all major browsers, iff no browser * versions we support at that time have relaxed this constraint * without providing built-in ES6 WeakMaps. */ defProp(Object, 'getOwnPropertyNames', { value: function fakeGetOwnPropertyNames(obj) { var result = gopn(obj); var i = 0; while ((i = result.indexOf(HIDDEN_NAME, i)) >= 0) { result.splice(i, 1); } return result; } }); /** getPropertyNames is not in ES5 but it is proposed for ES6 and
does appear in our whitelist, so we need to clean it too. */ if ('getPropertyNames' in Object) { defProp(Object, 'getPropertyNames', { value: function fakeGetPropertyNames(obj) { var result = originalProps.getPropertyNames(obj); var i = 0; while ((i = result.indexOf(HIDDEN_NAME, i)) >= 0) { result.splice(i, 1); } return result; } }); } /** *

To treat objects as identity-keys with reasonable efficiency * on ES5 by itself (i.e., without any object-keyed collections), we * need to add a hidden property to such key objects when we * can. This raises several issues: *

* We do so by * * Unfortunately, because of same-origin iframes, we cannot reliably * add this hidden property before an object becomes * non-extensible. Instead, if we encounter a non-extensible object * without a hidden record that we can detect (whether or not it has * a hidden record stored under a name secret to us), then we just * use the key object itself to represent its identity in a brute * force leaky map stored in the weak map, losing all the advantages * of weakness for these. */ function getHiddenRecord(key) { if (key !== Object(key)) { throw new TypeError('Not an object: ' + key); } var hiddenRecord = key[HIDDEN_NAME]; if (hiddenRecord && hiddenRecord.key === key) { return hiddenRecord; } if (!originalProps.isExtensible(key)) { // Weak map must brute force, as explained in doc-comment above. return void 0; } var gets = []; var vals = []; hiddenRecord = { key: key, // self pointer for quick own check above. gets: gets, // get___ methods identifying weak maps vals: vals // values associated with this key in each // corresponding weak map. }; defProp(key, HIDDEN_NAME, { value: hiddenRecord, writable: false, enumerable: false, configurable: false }); return hiddenRecord; } /** * Monkey patch operations that would make their argument * non-extensible. * *

The monkey patched versions throw a TypeError if their * argument is not an object, so it should only be done to functions * that should throw a TypeError anyway if their argument is not an * object. */ (function(){ var oldFreeze = Object.freeze; defProp(Object, 'freeze', { value: function identifyingFreeze(obj) { getHiddenRecord(obj); return oldFreeze(obj); } }); var oldSeal = Object.seal; defProp(Object, 'seal', { value: function identifyingSeal(obj) { getHiddenRecord(obj); return oldSeal(obj); } }); var oldPreventExtensions = Object.preventExtensions; defProp(Object, 'preventExtensions', { value: function identifyingPreventExtensions(obj) { getHiddenRecord(obj); return oldPreventExtensions(obj); } }); })(); function constFunc(func) { Object.freeze(func.prototype); return Object.freeze(func); } WeakMap = function() { var keys = []; // brute force for prematurely non-extensible keys. var vals = []; // brute force for corresponding values. function get___(key, opt_default) { var hr = getHiddenRecord(key); var i, vs; if (hr) { i = hr.gets.indexOf(get___); vs = hr.vals; } else { i = keys.indexOf(key); vs = vals; } return (i >= 0) ? vs[i] : opt_default; } function has___(key) { var hr = getHiddenRecord(key); var i; if (hr) { i = hr.gets.indexOf(get___); } else { i = keys.indexOf(key); } return i >= 0; } function set___(key, value) { var hr = getHiddenRecord(key); var i; if (hr) { i = hr.gets.indexOf(get___); if (i >= 0) { hr.vals[i] = value; } else { hr.gets.push(get___); hr.vals.push(value); } } else { i = keys.indexOf(key); if (i >= 0) { vals[i] = value; } else { keys.push(key); vals.push(value); } } } function delete___(key) { var hr = getHiddenRecord(key); var i; if (hr) { i = hr.gets.indexOf(get___); if (i >= 0) { hr.gets.splice(i, 1); hr.vals.splice(i, 1); } } else { i = keys.indexOf(key); if (i >= 0) { keys.splice(i, 1); vals.splice(i, 1); } } return true; } return Object.create(WeakMap.prototype, { get___: { value: constFunc(get___) }, has___: { value: constFunc(has___) }, set___: { value: constFunc(set___) }, delete___: { value: constFunc(delete___) } }); }; WeakMap.prototype = Object.create(Object.prototype, /** @lends module:montage/core/shim/weak-map.WeakMap# */ { /** * Returns the value most recently associated with key, or * opt_default if none. * @function * @param {object} key * @param {object} opt_default */ get: { value: function get(key, opt_default) { return this.get___(key, opt_default); }, writable: true, configurable: true }, /** * Returns true if there is a value associated with the specified key in the WeakMap, otherwise returns false * @function * @param {object} key */ has: { value: function has(key) { return this.has___(key); }, writable: true, configurable: true }, /** * Associate value with key in this WeakMap, overwriting any * previous association if present. * @function * @param {object} key * @param {object} value */ set: { value: function set(key, value) { this.set___(key, value); }, writable: true, configurable: true }, /** * Remove any association for key in this WeakMap, returning * whether there was one. * @function * @param {object} key * * FIXME

Note that the boolean return here does not work like the * delete operator. The operator returns * whether the deletion succeeds at bringing about a state in * which the deleted property is absent. The delete * operator therefore returns true if the property was already * absent, whereas this {@link delete} method returns false if * the association was already absent. */ 'delete': { value: function remove(key) { return this.delete___(key); }, writable: true, configurable: true } }); })(); exports.WeakMap = WeakMap;