aboutsummaryrefslogtreecommitdiff
path: root/js/lib/geom/shape-primitive.js
blob: acb0392019f175439873d330ab82b1da9138a040 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
/* <copyright>
Copyright (c) 2012, Motorola Mobility, Inc
All Rights Reserved.
BSD License.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

  - Redistributions of source code must retain the above copyright notice,
    this list of conditions and the following disclaimer.
  - Redistributions in binary form must reproduce the above copyright
    notice, this list of conditions and the following disclaimer in the
    documentation and/or other materials provided with the distribution.
  - Neither the name of Motorola Mobility nor the names of its contributors
    may be used to endorse or promote products derived from this software
    without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
</copyright> */

// Helper function for generating a RDGE primitive
var ShapePrimitive = {};

ShapePrimitive.create = function(coords,  normals,  uvs,  indices, primType, vertexCount) {
    var renderer = RDGE.globals.engine.getContext().renderer;

    // to setup a primitive you must define it
    // create a new primitive definition here to then fill out
    var prim = new RDGE.rdgePrimitiveDefinition();

    // the vertex definition declares how the data will be delivered to the shader
    // the position of an element in array determines which attribute in a shader the
    // data is bound to
    prim.vertexDefinition = {
        // this shows two ways to map this data to an attribute
        "vert":{'type':renderer.VS_ELEMENT_POS, 'bufferIndex':0, 'bufferUsage': renderer.BUFFER_STATIC},
        "a_pos":{'type':renderer.VS_ELEMENT_POS, 'bufferIndex':0, 'bufferUsage': renderer.BUFFER_STATIC},

        "normal":{'type':renderer.VS_ELEMENT_FLOAT3, 'bufferIndex':1, 'bufferUsage': renderer.BUFFER_STATIC},
        "a_nrm":{'type':renderer.VS_ELEMENT_FLOAT3, 'bufferIndex':1, 'bufferUsage': renderer.BUFFER_STATIC},
        "a_normal":{'type':renderer.VS_ELEMENT_FLOAT3, 'bufferIndex':1, 'bufferUsage': renderer.BUFFER_STATIC},

        "texcoord":{'type':renderer.VS_ELEMENT_FLOAT2, 'bufferIndex':2, 'bufferUsage': renderer.BUFFER_STATIC},
        "a_texcoord":{'type':renderer.VS_ELEMENT_FLOAT2, 'bufferIndex':2, 'bufferUsage': renderer.BUFFER_STATIC}
    };

    // the actual data that correlates to the vertex definition
    prim.bufferStreams = [ coords, normals, uvs ];

    // what type of buffers the data resides in, static is the most common case
    prim.streamUsage = [ renderer.BUFFER_STATIC, renderer.BUFFER_STATIC, renderer.BUFFER_STATIC ];

    // this tells the renderer to draw the primitive as a list of triangles
    prim.type = primType;

    prim.indexUsage = renderer.BUFFER_STREAM;
    prim.indexBuffer = indices;

    // finally the primitive is created, buffers are generated and the system determines
    // the data it needs to draw this primitive according to the previous definition
    renderer.createPrimitive(prim, vertexCount);

    return prim;
};

ShapePrimitive.getMeshBounds = function( verts,  nVerts )
{
    if (!verts || (nVerts <= 0))  return null;

    var bounds = [verts[0], verts[1], verts[2],  verts[0], verts[1], verts[2]];
    var index = 3;
    for (var i=1;  i<nVerts;  i++)
    {
        var x = verts[index],  y = verts[index+1],  z = verts[index+2];
        index += 3;

        if      (x < bounds[0])  bounds[0] = x;
        else if (x > bounds[3])  bounds[3] = x;
        if      (y < bounds[1])  bounds[1] = y;
        else if (y > bounds[4])  bounds[4] = y;
        if      (z < bounds[2])  bounds[2] = z;
        else if (z > bounds[5])  bounds[5] = z;
    }

    return bounds;
};

ShapePrimitive.getBounds = function( prim )
{
    var verts = prim.bufferStreams[0];
    var nVerts = verts.length;
    var xMin = verts[0],  xMax = verts[0],
        yMin = verts[1],  yMax = verts[1],
        zMin = verts[2],  zMax = verts[2];

    for (var index=3;  index<verts.length;  )
    {
        if (verts[index] < xMin)  xMin = verts[index];
        else if (verts[index] > xMax)  xMax = verts[index];

        index++;
        if (verts[index] < yMin)  yMin = verts[index];
        else if (verts[index] > yMax)  yMax = verts[index];

        index++;
        if (verts[index] < zMin)  zMin = verts[index];
        else if (verts[index] > zMax)  zMax = verts[index];

        index++;
    }

    return [xMin, yMin, zMin,  xMax, yMax, zMax];
};

ShapePrimitive.refineMesh = function( verts, norms, uvs, indices, nVertices,  paramRange,  tolerance )
{
    var oldVrtCount = nVertices;

    // get the param range
    var pUMin = paramRange[0],  pVMin = paramRange[1],
        pUMax = paramRange[2],  pVMax = paramRange[3];
    var iTriangle = 0;
    var nTriangles = indices.length/3;
    var index = 0;
    while (iTriangle < nTriangles)
    {
        // get the indices of the 3 vertices
        var i0 = indices[index],
            i1 = indices[index+1],
            i2 = indices[index+2];

        // get the uv values
        //var vrtIndex = 3*iTriangle;
        var iuv0 = 2 * i0,
            iuv1 = 2 * i1,
            iuv2 = 2 * i2;
        var u0 = uvs[iuv0],  v0 = uvs[iuv0+1],
            u1 = uvs[iuv1],  v1 = uvs[iuv1+1],
            u2 = uvs[iuv2],  v2 = uvs[iuv2+1];

        // find the u and v range
        var uMin = u0,  vMin = v0;
        if (u1 < uMin)  uMin = u1;  if (v1 < vMin)  vMin = v1;
        if (u2 < uMin)  uMin = u2;  if (v2 < vMin)  vMin = v2;
        var uMax = u0,  vMax = v0;
        if (u1 > uMax)  uMax = u1;  if (v1 > vMax)  vMax = v1;
        if (u2 > uMax)  uMax = u2;  if (v2 > vMax)  vMax = v2;

        // if the parameter range of the triangle is outside the
        // desired parameter range, advance to the next polygon and continue
        if ((uMin > pUMax) || (uMax < pUMin) || (vMin > pVMax) || (vMax < pVMin))
        {
            // go to the next triangle
            iTriangle++;
            index += 3;
        }
        else
        {
            // check thesize of the triangle in uv space.  If small enough, advance
            // to the next triangle.  If not small enough, split the triangle into 3;
            var du = uMax - uMin,  dv = vMax - vMin;
            if ((du < tolerance) && (dv < tolerance))
            {
                iTriangle++;
                index += 3;
            }
            else    // split the triangle into 4 parts
            {
                //calculate the position of the new vertex
                var iPt0 = 3 * i0,
                    iPt1 = 3 * i1,
                    iPt2 = 3 * i2;
                var x0 = verts[iPt0],  y0 = verts[iPt0+1],  z0 = verts[iPt0+2],
                    x1 = verts[iPt1],  y1 = verts[iPt1+1],  z1 = verts[iPt1+2],
                    x2 = verts[iPt2],  y2 = verts[iPt2+1],  z2 = verts[iPt2+2];
                
                // calculate the midpoints of the edges
                var xA = (x0 + x1)/2.0,  yA = (y0 + y1)/2.0,  zA = (z0 + z1)/2.0,
                    xB = (x1 + x2)/2.0,  yB = (y1 + y2)/2.0,  zB = (z1 + z2)/2.0,
                    xC = (x2 + x0)/2.0,  yC = (y2 + y0)/2.0,  zC = (z2 + z0)/2.0;

                // calculate the uv values of the new coordinates
                var uA = (u0 + u1)/2.0,  vA = (v0 + v1)/2.0,
                    uB = (u1 + u2)/2.0,  vB = (v1 + v2)/2.0,
                    uC = (u2 + u0)/2.0,  vC = (v2 + v0)/2.0;

                // calculate the normals for the new points
                var nx0 = norms[iPt0],  ny0 = norms[iPt0+1],  nz0 = norms[iPt0+2],
                    nx1 = norms[iPt1],  ny1 = norms[iPt1+1],  nz1 = norms[iPt1+2],
                    nx2 = norms[iPt2],  ny2 = norms[iPt2+1],  nz2 = norms[iPt2+2];
                var nxA = (nx0 + nx1),  nyA = (ny0 + ny1),  nzA = (nz0 + nz1);  var nrmA = VecUtils.vecNormalize(3, [nxA, nyA, nzA], 1.0 ),
                    nxB = (nx1 + nx2),  nyB = (ny1 + ny2),  nzB = (nz1 + nz2);  var nrmB = VecUtils.vecNormalize(3, [nxB, nyB, nzB], 1.0 ),
                    nxC = (nx2 + nx0),  nyC = (ny2 + ny0),  nzC = (nz2 + nz0);  var nrmC = VecUtils.vecNormalize(3, [nxC, nyC, nzC], 1.0 );

                // push everything
                verts.push(xA);  verts.push(yA);  verts.push(zA);
                verts.push(xB);  verts.push(yB);  verts.push(zB);
                verts.push(xC);  verts.push(yC);  verts.push(zC);
                uvs.push(uA),  uvs.push(vA);
                uvs.push(uB),  uvs.push(vB);
                uvs.push(uC),  uvs.push(vC);
                norms.push(nrmA[0]);  norms.push(nrmA[1]);  norms.push(nrmA[2]);
                norms.push(nrmB[0]);  norms.push(nrmB[1]);  norms.push(nrmB[2]);
                norms.push(nrmC[0]);  norms.push(nrmC[1]);  norms.push(nrmC[2]);

                // split the current triangle into 4
                indices[index+1] = nVertices;  indices[index+2] = nVertices+2;
                indices.push(nVertices);    indices.push(i1);           indices.push(nVertices+1);  nTriangles++;
                indices.push(nVertices+1);  indices.push(i2);           indices.push(nVertices+2);  nTriangles++;
                indices.push(nVertices);    indices.push(nVertices+1);  indices.push(nVertices+2);  nTriangles++;
                nVertices += 3;

                // by not advancing 'index', we examine the first of the 3 triangles generated above
            }
        }
    }

    console.log( "refine mesh vertex count " + oldVrtCount  + " => " + nVertices );
    return nVertices;
};


if (typeof exports === "object") {
    exports.ShapePrimitive = ShapePrimitive;
}